
J Glob Optim (2008) 42:51–67
DOI 10.1007/s10898-008-9287-9

Tight convex underestimators for C2-continuous
problems: I. univariate functions

Chrysanthos E. Gounaris · Christodoulos A. Floudas

Received: 14 December 2006 / Accepted: 6 February 2008 / Published online: 13 March 2008
© Springer Science+Business Media, LLC. 2008

Abstract A novel method for the convex underestimation of univariate functions is
presented in this paper. The method is based on a piecewise application of the well-known
αBB underestimator, which produces an overall underestimator that is piecewise convex.
Subsequently, two algorithms are used to identify the linear segments needed for the
construction of its C1-continuous convex envelope, which is itself a valid convex under-
estimator of the original function. The resulting convex underestimators are very tight, and
their tightness benefits from finer partitioning of the initial domain. It is theoretically proven
that there is always some finite level of partitioning for which the method yields the convex
envelope of the function of interest. The method was applied on a set of univariate test func-
tions previously presented in the literature, and the results indicate that the method produces
convex underestimators of high quality in terms of both lower bound and tightness over the
whole domain under consideration.

Keywords Global optimization · Convex underestimation · αBB · Convex envelopes ·
Univariate functions

1 Introduction

Due to recent theoretical and algorithmic advances, global optimization has found an
increased number of applications across many branches of engineering and science. For
instance, complex problems, like the ones arising in refinery pooling (Meyer and Floudas
2006), azeotropic distillation (Maranas et al. 1996; Harding et al. 1997) and phase and
chemical equilibrium (McDonald and Floudas 1994, 1995, 1997), have all been tackled by
global optimization approaches. Furthermore, many interesting mathematical problems (e.g.,
enclosure of all solutions of systems of nonlinear equations (Maranas and Floudas 1995),
parameter estimation in nonlinear algebraic models (Esposito and Floudas 1998), bilevel
programming problems (Gümüş and Floudas 2001)) can be expressed with global

C. E. Gounaris · C. A. Floudas (B)
Department of Chemical Engineering, Princeton University, Princeton, NJ 08544-5263, USA
e-mail: floudas@titan.princeton.edu

123

52 J Glob Optim (2008) 42:51–67

optimization formulations, something that expands the applicability of the relevant results.
The publications by Sherali and Adams (1999), Floudas (2000), Horst and Tuy (2003), Horst
et al. (2000), Tawarmalani and Sahinidis (2002a) and Floudas and Pardalos (1995, 2003), as
well as the recent review papers by Floudas (2005) and Floudas et al. (2005), provide thorough
insight on the current status of the field from both the theoretical and application perspective.

In their effort to locate the global solution, deterministic global optimization algorithms,
like the αBB (Maranas and Floudas 1994; Androulakis et al. 1995; Adjiman et al. 1998a,b),
employ a branch and bound framework. During this process, convex underestimation tech-
niques are used to formulate relaxed convex problems that can be solved to optimality with
the use of local solvers, thus providing valid lower bounds for the original problem. The
tightness of the underestimators used is of fundamental importance for the computational
performance of these algorithms, since a tighter relaxation can lead to faster fathoming and
less nodes of the branch and bound tree to be visited (Floudas 2000).

As a consequence, a lot of research effort has been focused on finding tight convex under-
estimators, particularly for functions of some special structure. From the pioneering work of
McCormick (1976) and Al-Khayyal and Falk (1983) who introduced the convex and concave
envelope of the bilinear term, up to more recent results on the trilinear envelope (Meyer and
Floudas 2003, 2004), a multitude of underestimators has been proposed in the literature. These
include results on univariate monomials of odd degree (Liberti and Pantelides 2003), multi-
linear functions (Ryoo and Sahinidis 2001), fractional (Maranas and Floudas 1995; Tawar-
malani and Sahinidis 2001, 2002b) and trigonometric terms (Caratzoulas and Floudas 2005).

In the case of arbitrary nonconvex functions that do not exhibit an exploitable mathe-
matical structure, the αBB general underestimator (Androulakis et al. 1995; Adjiman and
Floudas 1996) can be used:

L(x) = f (x)−
V∑

v=1

αv(xv − x L
v)(x

U
v − xv) (1)

Originally introduced in the work of Maranas and Floudas (1994), this underestimator
derives from the function by subtracting a positive quadratic (αv ≥ 0∀v). Given sufficiently
large values of the αv parameters, all nonconvexities in the original function f (x) can be
overpowered, resulting into a convex underestimator L(x) that is valid for the entire domain
[x L , xU]. A number of rigorous methods have been devised in order to select appropriate
values for these parameters (Adjiman et al. 1998a; Hertz et al. 1999). Extensive computa-
tional testing of the algorithm (Adjiman et al. 1998b) showed that the most efficient of those
methods is the one based on the scaled Gherschgorin theorem. According to this method, it
suffices to select:

αv = max

⎧
⎪⎨

⎪⎩
0,−1

2

⎛

⎜⎝hvv −
V∑

u=1
u �=v

max
{|hvu |, |hvu |} (x

U
u − x L

u)

(xU
v − x L

v)

⎞

⎟⎠

⎫
⎪⎬

⎪⎭
(2)

where hvu and hvu are lower and upper bounds of ∂2 f/∂xvxu that can be calculated by
interval analysis.

One could alternatively use a new class of general purpose convex underestimators that
has been developed by Akrotirianakis and Floudas (2004a,b). These underestimators are
derived in a similar fashion, by subtracting an exponential term from the original function,
that is:

123

J Glob Optim (2008) 42:51–67 53

L1(x) = f (x)−
V∑

v=1

(
1 − eγv(xv−x L

v)
) (

1 − eγv(x
U
v −xv)

)
(3)

An iterative systematic procedure is used to determine the values of the γv parameters so
as the underestimating function to be convex. The procedure ensures also that the result-
ing underestimator L1(x) is tighter than L(x), the one that results from the original method.
Floudas and Kreinovich (2007a,b) have in fact shown that these two functional forms (original
quadratic and exponential) are the only optimal ones, since they are the only ones to be shift-,
sign- and scale-invariant.

Maranas and Floudas (1994) showed that the maximum separation distance between the
original function f (x) and the underestimator L(x) of Eq. 1 is a quadratic function of interval
length. Because of this, as well as because of potentially less overestimation in the interval
extension of the Hessian matrix elements hvu , the underestimator would become tighter
with shrinkage of the domain under consideration. This was firstly exploited in the work of
Meyer and Floudas (2005), where a piecewise approach was utilized. The method proposed
partitioning of the domain into many subdomains and construction of the corresponding αBB
underestimator for each one of them. These underestimators, although not valid for the entire
domain, are much tighter in their respective subdomains. A linear term is subsequently added
to each one of these underestimators and is selected in such a way, so that the combination
of all these convex pieces results into an overall convex underestimator that is continuous
and smooth (C1-continuity).

In the proposed approach, we construct these αBB underestimators, but, instead of adding
linear terms, we identify those supporting line segments that have to be combined with convex
parts of the original underestimators so as to form a C1-continuous convex underestimator
that is valid for the overall domain under consideration. One can also consider only the lines
corresponding to these linear segments, thus coming up with a piecewise linear underesti-
mator that can easily be incorporated in the NLP relaxation as a set of linear constraints.

The method is presented in detail for the case of univariate functions, where it can be
directly applied. Theoretical and algorithmic extensions of the method for application on
multivariate functions have also been developed, but these will be discussed in a subsequent
paper (Gounaris and Floudas 2008).

2 Theoretical results

Let f (x) be a univariate function that needs to be underestimated in D = [x L , xU]. We select
an integer N > 1 and partition the complete domain in N segments of equal length. Thus,
the i th subdomain would be defined as Di = [xi−1, xi], where: xi = x L + i

N (x
U − x L),

i = 0, 1, . . . , N .
For every subdomain Di , i = 1, 2, . . . , N , we construct the corresponding αBB underes-

timator:

Pi (x) = f (x)− αi (x − xi−1)(xi − x)

αi = max
{

0,− 1
2 f ′′

(Di)

} (4)

where f ′′
(Di)

is a lower bound of the second derivative that is valid for the entire subdo-
main Di . Note that although an underestimator Pi (x) can be defined outside its respective
subdomain, its convexity is only guaranteed for x ∈ [xi−1, xi].

123

54 J Glob Optim (2008) 42:51–67

U(x)

f(x)

x

V(x)

f(x)

x

Fig. 1 Function f (x) and underestimators U (x) and V (x)

We define P(x), x ∈ [x L , xU] to be the following piecewise function:

P(x) = Pi (x), if xi−1 ≤ x ≤ xi (5)

This function is a piecewise convex valid underestimator of f (x). Since it is not convex, a
convexification technique has to be employed. Our proposed technique involves the identifi-
cation of those supporting line segments that are required for an overall understimator U (x)
(depicted in Fig. 1). The technique is based on two algorithms, called “inner” and “outer”,
which are described in detail in the subsequent sections.

The underestimator U (x) consists of the identified linear parts, as well as convex parts of
the underestimators Pi (x), therefore it is a C1-continuous branched function. This might pose
some computational complications if the lower bounding (relaxation) problem is to be solved
by local optimization solvers that require C2-continuity. In order to avoid this problem, one
can take into account only the lines that correspond to the line segments. According to this
alternative, we first identify the linear segments needed for the construction of underestimator
U (x), but we consider those as lines defined in [x L , xU]. Let there be K such lines denoted
as Tk(x), k = 1, 2, . . . , K and arranged in order of ascending slope. If applicable, this set
can be augmented with lines that are tangential to P1 and PN at the respective domain edges
x L and xU , according to the following two rules:

if
dP0

dx

∣∣∣∣
x L
< slope(T1) then add T0(x) = P0(x

L)+ dP0

dx

∣∣∣∣
x L
(x − x L)

if
dPN

dx

∣∣∣∣
xU
> slope(TK) then add TK+1(x) = PN (x

U)+ dPN

dx

∣∣∣∣
xU
(x − xU)

Note that these two tangents can be included in the set also in the case where K = 0,
something that would have occurred if function f (x) was already convex. This corresponds
to a possible linearization of a convex function.

Each of these lines Tk is a valid underestimator of function f (x) across the whole domain.
We define the function V (x) to be the pointwise maximum of all these lines. V (x) is convex,
since it is the pointwise maximum of linear functions and it is obviously an underestimator,
since it consists of pieces of other underestimators. The underestimator V (x) is also shown in
Fig. 1. At the expense of some tightness (in the regions where underestimator U (x) consisted

123

J Glob Optim (2008) 42:51–67 55

(a) (b) (c)

Fig. 2 Examples of supporting line segments

of convex parts), we now have a piecewise linear underestimator V (x) that can be incorpo-
rated in the relaxation as a set of linear constraints. The whole lower bounding problem can
now be formulated as a linear programming problem (LP).

2.1 Inner algorithm

Given two convex underestimators Pn and Pm , such that n < m, the objective of the “inner”
algorithm is to identify the supporting line segment that underestimates both pieces in their
respective subdomains [xn−1, xn] and [xm−1, xm].

This line segment can be completely defined by a point {x (n), Pn(x (n))} on the nth piece,
and a point {x (m), Pm(x (m))} on the mth. Note that it can be tangential to both convex pieces,
tangential to only one of them, or not tangential to any of the two pieces. Examples of these
cases are shown in Fig. 2. The inner algorithm should therefore constitute a procedure that
would identify the applicable case and would robustly calculate these two points x (n) and
x (m). The line corresponding to the line segment would then be:

T (x) = Pn(x
(n))+ Pm(x (m))− Pn(x (n))

x (m) − x (n)
(x − x (n)) (6)

In the case where x (n) = x (m) (that would simultaneously require x (n) = xn, x (m) =
xm−1 and m = n + 1), the applicable line could be defined as:

T (x) = Pn(x
(n))+ dPn

dx

∣∣∣∣
x (n)

(x − x (n)) (7)

that corresponds to the common tangent at the joint of the two consecutive convex pieces.
Because of this, the underestimator V (x) of an originally convex function f (x) would
correspond to a collection of tangential supports at the points where the domain has been
partitioned.

Let us define a number of points:

• Points x I ∈ [xn−1, xn] and x I I ∈ [xm−1, xm]: These points correspond to the case where
the line T is tangent to both pieces (Fig. 2a). Point x I corresponds to piece n and point
x I I corresponds to piece m. They can be obtained by solving the following system of
nonlinear equations:

dPn

dx

∣∣∣∣
x I
(x I I − x I)+ Pn(x I)− Pm(x I I) = 0

dPm

dx

∣∣∣∣
x I I
(x I I − x I)+ Pn(x I)− Pm(x I I) = 0

(8)

• Point x I ′ ∈ [xn−1, xn]: This point corresponds to the case where the line T is tangent
to only piece n (similar to Fig. 2b). Point x (m) is fixed at either of the two subdomain

123

56 J Glob Optim (2008) 42:51–67

edges of piece m. Point x I ′
can be obtained from the solution of the following nonlinear

equation:

dPn

dx

∣∣∣∣
x I ′
(x f i x − x I ′

)+ Pn(x
I ′
)− Pm(x

f i x) = 0 (9)

where: x f i x = xm−1 or xm

• Point x I I ′ ∈ [xm−1, xm]: This point corresponds to the case where the line T is tangent
to only piece m (Fig. 2b). Point x (n) is fixed at either of the two subdomain edges of piece
n. Point x I I ′

can be obtained from the solution of the following nonlinear equation:

dPm

dx

∣∣∣∣
x I I ′

(x f i x − x I I ′
)+ Pm(x

I I ′
)− Pn(x

f i x) = 0 (10)

where: x f i x = xn−1 or xn

• Points xo1 ∈ [xm−1, xm] and xo2 ∈ [xm−1, xm]: These points are points of piece m,
where their slope is equal to the slope of piece n at x = xn−1 and x = xn respectively.
They can be obtained from the solution of the following nonlinear equations:

dPm

dx

∣∣∣∣
xo1

− dPn

dx

∣∣∣∣
xn−1

= 0 (11)

dPm

dx

∣∣∣∣
xo2

− dPn

dx

∣∣∣∣
xn

= 0 (12)

• Points xo3 ∈ [xn−1, xn] and xo4 ∈ [xn−1, xn]: These points are points of piece n, where
their slope is equal to the slope of piece m at x = xm−1 and x = xm respectively. They
can be obtained from the solution of the following nonlinear equations:

dPn

dx

∣∣∣∣
xo3

− dPm

dx

∣∣∣∣
xm−1

= 0 (13)

dPn

dx

∣∣∣∣
xo4

− dPm

dx

∣∣∣∣
xm

= 0 (14)

Let us also define the following slopes:

(Q1) = dPn

dx

∣∣∣∣
xn−1

(Q2) = dPn

dx

∣∣∣∣
xn

(Q3) = dPm

dx

∣∣∣∣
xm−1

(Q4) = dPm

dx

∣∣∣∣
xm

(O1) = Pm(xo1)− Pn(xn − 1)

xo1 − xn − 1 (R) = Pm(xm)− Pn(xn)

xm − xn

(O2) = Pm(xo2)− Pn(xn)

xo2 − xn
(L) = Pm(xm − 1)− Pn(xn − 1)

xm − 1 − xn − 1

(O3) = Pm(xm − 1)− Pn(xo3)

xm − 1 − xo3 (E) = Pm(xm)− Pn(xn − 1)

xm − xn − 1

(O4) = Pm(xm)− Pn(xo4)

xm − xo4 (I) = Pm(xm − 1)− Pn(xn)

xm − 1 − xn
(if m �= n + 1)

(I) =
dPn
dx

∣∣∣
xn

+ dPm
dx

∣∣∣
xm − 1

2
(if m = n + 1)

123

J Glob Optim (2008) 42:51–67 57

Due to convexity of the pieces, it always holds that (Q1) ≤ (Q2) and (Q3) ≤ (Q4).
Every possible value combination of these four slopes can be described with one and only
one of the following six cases:

Case A : (Q1) ≤ (Q2) ≤ (Q3) ≤ (Q4) Case D : (Q3) < (Q1) ≤ (Q2) ≤ (Q4)

Case B : (Q1) ≤ (Q3) < (Q2) ≤ (Q4) Case E : (Q3) < (Q1) ≤ (Q4) < (Q2)

Case C : (Q1) ≤ (Q3) ≤ (Q4) < (Q2) Case F : (Q3) ≤ (Q4) < (Q1) ≤ (Q2)

Depending on which case applies, the procedure would be as follows:

Case A : Case B :
if (R) > (Q4), then return(xn , xm) if (R) ≥ (Q4), then return(xn , xm)

elseif (I) > (Q3), then return(xn , x I I ′
) elseif (O2) > (Q2), then return(xn , x I I ′

)

elseif (I) ≥ (Q2), then return(xn , xm−1) elseif (O3) ≥ (Q3), then return(x I , x I I)

elseif (L) > (Q1), then return(x I ′
, xm−1) elseif (L) > (Q1), then return(x I ′

, xm−1)

else return(xn−1, xm−1) else return(xn−1, xm−1)

Case C: Case D :
if (R) ≥ (Q2), then return(xn , xm) if (R) ≥ (Q4), then return(xn , xm)

elseif (O4) > (Q4), then return(x I ′
, xm) elseif (O2) > (Q2), then return(xn , x I I ′

)

elseif (O3) ≥ (Q3), then return(x I , x I I) elseif (O1) ≥ (Q1), then return(x I , x I I)

elseif (L) > (Q1), then return(xn−1, x I I ′
) elseif (L) > (Q3), then return(xn−1, x I I ′

)

else return(xn−1, xm−1) else return(xn−1, xm−1)

Case E: Case F:
if (R) ≥ (Q2), then return(xn , xm) if (R) ≥ (Q2), then return(xn , xm)

elseif (O4) > (Q4), then return(x I ′
, xm) elseif (E) > (Q1), then return(x I ′

, xm)

elseif (O1) ≥ (Q1), then return(x I , x I I) elseif (E) ≥ (Q4), then return(xn−1, xm)

elseif (L) > (Q3), then return(xn−1, x I I ′
) elseif (L) > (Q3), then return(xn−1, x I I ′

)

else return(xn−1, xm−1) else return(xn−1, xm−1)

Note that these sequences of slope comparisons ensure that a solution of Eqs. 8–14 will
be required only when its existness and uniqueness within the respective subdomains is guar-
anteed. Therefore, utilization of local techniques, such as Newton–Raphson, would suffice
in locating the appropriate solution of these nonlinear equations.

Illustrative example
As an illustration, let us consider the example of Fig. 3. For this particular case, we have:
(Q1) = −2.00, (Q2) = +0.20, (Q3) = +0.25 and (Q4) = +1.00. Therefore, Case A
applies. We compute: (R) = +0.14. The first comparison is false so we move on to compute:
(I) = −0.34. The second and third comparisons also fail, and we compute (L) = −0.67. The
fourth comparison holds true, that is: (L)> (Q1), therefore the algorithm returns the result
that the supporting line segment should be tangential to the nth piece at x (n) = x I ′

, to be
identified by solving Eq. 9, while its other end should be fixed at x (m) = xm−1. The resulting
line is shown in Fig. 3. Note that it is guaranteed that point x I ′

exists and that it is unique.

2.2 Outer algorithm

Given a piecewise convex underestimator P(x) consisting of a set of sequential convex pieces
Pi (x), i = 1, 2, . . . , N , the objective of the “outer” algorithm is to identify those supporting
line segments (or lines) that participate in the overall underestimator U (x) (or V (x)).

123

58 J Glob Optim (2008) 42:51–67

Fig. 3 Illustrative example for “inner” algorithm

Having established the capability of identifying supporting line segments (or lines) for a
given pair of convex pieces n and m (“inner” algorithm), the “outer” algorithm will make
appropriate calls to this procedure and will use the returning results to identify which of those
line segments should be taken into account when constructing an overall convex underesti-
mator.

The algorithm is an inductive incremental procedure that mimics the Graham–Scan algo-
rithm for the computation of the convex hull of a set of points (O’Rourke 1998). It can be
summarized with the following pseudo-code:

K = 0, n1 = 1, m = 2

(δ1) : while (nK+1 �= N) {
(δ2) : Tc = INNER(nK+1,m)

if (K = 0) or (slope(Tc) > slope(TK)) {
K = K + 1, TK = Tc, nK+1 = m, m = m + 1, goto (δ1)

else

TK = void, K = K − 1, goto (δ2)

}
}

Note that the algorithm does not require that the pieces are connected, that is: Pi−1(xi) =
Pi (xi). However, this holds true for every i = 1, 2, . . . , N since the underestimator P(x) is
continuous (for univariate functions).

Illustrative example
Consider the example of Fig. 4. In this particular example, we have partitioned the domain

[x L , xU] = [x0, x5] into N = 5 subdomains, each with length �x = xU −x L

5 , and we have
constructed the depicted underestimators Pi ,i ∈ {1, 2, 3, 4, 5} according to Eq. 4. The algo-
rithm will examine the set of these underestimators in increasing index i , and will perform
a sequence of calls to the “inner” algorithm, each time providing a different pair of these
pieces as arguments. We start with an empty stack of linear segments. In the first iteration,
the algorithm constructs the linear segment Tc = T12 = INNER(1, 2), which is accepted

123

J Glob Optim (2008) 42:51–67 59

Fig. 4 Illustrative example for “outer” algorithm

in the stack since it is the only one so far (K = 0). In the second iteration, the algorithm
constructs the linear segment Tc = T23 = INNER(2, 3), which is also accepted because
slope(T23) > slope(T12). In the next iteration, linear segment Tc = T34 is constructed, but
not accepted because the slope criterion fails, that is slope(T34) ≤ slope(T23). Furthermore,
T23 is removed from the stack and the algorithm takes a step backwards to consider piece P2

once more. Tc = T24 is constructed and its slope compared with the slope of the top (and
currently only one) member of the stack, T12. The slope criterion, slope(T24) > slope(T12),
holds true and T24 is accepted in the stack. In the next (and last) iteration, T45 is constructed
and accepted in the stack as well, since slope(T45) > slope(T24). Now that the last piece,
P5, has been visited, the loop exits and the algorithm terminates. The final instance of the
stack is T = {T12, T24, T45}, which constitutes the set of linear segments that are required
for the construction of an overall convex underestimator U (x).

3 Tightness of proposed underestimator

It is apparent that as the level of partitioning increases, the underestimator P(x) comes closer
to the function, and therefore convex underestimator U (x) approaches the convex envelope
of f (x). In fact, for any function, there will be a finite level of partitioning that suffices for this
to happen. Before we provide a rigorous proof to this, we will first present—without proof—a
number of relevant lemmas. Their proofs can be found online at http://titan.princeton.edu/.

Lemma 1 If domain D j is a subset of domain Di , its corresponding parameter α j is less
or equal than αi , that is:

D j ⊆ Di ⇒ α j ≤ αi (15)

Lemma 2 Let x ∈ [x L , xU] be a domain of interest and Di , i = 1, 2, . . . , N be the subdo-
mains that result from its partition into N pieces. Every subdomain D′

j , j = 1, 2, . . . , N ′,
that results from a partitioning of [x L , xU] in N ′ = s N , s ∈ {1, 2, . . .} pieces, is a subset of
some original subdomain Di , that is:

N ′ = s N ⇒ 	 i j : D′
j ⊆ Di j ∀ j (16)

Lemma 3 Let x̃k, k = 1, 2, . . . , K be a set of regular numbers, such that x L < x̃k < xU ∀k,
that constitute the coordinates of a set of points in the domain (x L , xU). There is some level

123

http://titan.princeton.edu/

60 J Glob Optim (2008) 42:51–67

of uniform partitioning, Nc, of domain [x L , xU], for which every such point coincides with
a border between two adjacent subdomains.

It is important to point out that, in principle, the coordinates of the points of interest, x̃k ,
may not be regular numbers. However, the regularity assumption made in Lemma 3 should
not be considered limiting in their selection. Every non-regular number is always ε-close to
a regular number, with this ε being arbitrarily small. So, instead of the points of interest, one
can use their closest regular numbers without any significant errors in the computations. In
any case, these computations are typically taking place under a precision limitation that is
imposed by a floating point implementation.

Lemma 4 Let φ(f)(x) denote the convex envelope of function f (x), that is the tightest pos-
sible convex underestimator of this function across a given domain D, and let f1(x) and
f2(x) be two functions defined in this domain. The following holds:

φ(f1)(x) ≤ f2(x) ≤ f1(x) ∀x ∈ D ⇒ φ(f1)(x) = φ(f2)(x) ∀x ∈ D (17)

Lemma 5 Let f (x) be a strictly concave function defined in [xα, xβ] and let Di , i =
1, 2, . . . , s N be the subdomains that result from its partition into s N pieces. There is some
finite integer s, s ≥ 1, for which the underestimator P(x) is above the convex envelope of
f (x), that is:

φ(f)(x) ≤ P(x) ∀x ∈ [xα, xβ] ⇔ φ(f)(x) ≤ Pi (x) ∀x ∈ Di ∀i

where : Pi (x) = f (x)− αi (x − xi−1)(xi − x) , i = 1, 2, . . . , s N
(18)

Let us now apply the preceding lemmas in order to prove the following theorem:

Theorem 1 There is some finite partitioning level N , for which the convex underestimator
U (x) is the convex envelope of function f (x).

Proof Every C2-continuous univariate function consists of convex (possibly containing lin-
ear) and strictly concave segments in an alternating sequence. Let the points of interest x̃k

be the points at which the second derivative switches between non-negative (convex) and
strictly negative (strictly concave) values. According to Lemma 3, there is a partitioning level
Nc for which we have a domain change at every one of these points. Thus, the subdomains
produced in this manner belong fully to either a convex or a strictly concave part of function
f and, because of Lemma 2, the same will hold if we partition into N ′

c = s Nc, s ∈ N
∗

subdomains as well.
For each subdomain Di that corresponds to a convex part, we have αi = 0 and Pi (x) =

f (x)∀x ∈ Di . Therefore, since (by definition)φ(f) ≤ f , we also haveφ(f)(x) ≤ Pi (x)∀x ∈
Di . For each subdomain Di that corresponds to a strictly concave part, Lemma 5 dictates that
there is some finite partitioning si Nc, si ∈ N

∗ for which the same holds. Choosing the least
common multiple of all these will lead to a partitioning for which φ(f)(x) ≤ Pi (x) ∀x ∈
Di ∀i . Thus:

φ(f)(x) ≤ P(x) ∀x ∈ [x L , xU] (19)

Equation 19 along with the fact that function P is an underestimator of f, P(x)≤ f (x) ∀x∈
[x L , xU], allows for the application of Lemma 4 (with f1 ≡ f and f2 ≡ P), which leads

123

J Glob Optim (2008) 42:51–67 61

to φ(f)(x) = φ(P)(x) ∀x ∈ [x L , xU]. But the convex underestimator U (x) is the convex
envelope of underestimator P(x) (by construction), that is U (x) = φ(P)(x). We finally come
to the conclusion that:

U (x) = φ(f)(x) ∀x ∈ [x L , xU] (20)

and thus Theorem 1 has been proven. �
It has already been mentioned that the underestimator V (x), which is a piecewise linear

approximation of underestimator U (x), comes with some expense in tightness. However, as
the level of partitioning increases, underestimator V (x) comes closer to underestimator U (x)
and their maximum difference can be driven to be arbitrarily small. This is summarized in
the following theorem:

Theorem 2 There is some finite partitioning level N , for which underestimator V is ε-close
to underestimator U, that is:

max
x∈D

{U (x)− V (x)} < ε (21)

where: ε > 0 is an arbitrarily small constant.

Proof The convex underestimator U (x) consists of linear parts (identified by the two algo-
rithms) as well as convex parts of some pieces of the piecewise convex underestimator P(x).
By construction, underestimator V (x) coincides with U (x) at these linear parts, which are
practically extended so as the overall underestimator to be piecewise linear. The underesti-
mator V (x) might also be augmented with tangents of the first and last piece at x = x L and
x = xU respectively, as well as with common tangents at the joint of two consecutive pieces,
x = xi , in the case where function f (x) is convex along [xi−1, xi+1] and thus coincides
with pieces Pi (x) and Pi+1(x).

For the parts where the C1-continuous U (x) is linear, U (x)− V (x) = 0 and the theorem
holds. We will focus on proving the theorem for the regions where underestimator U (x) is
strictly convex.

Note that for every two consecutive lines Tk and Tk+1 of the underestimator V (x), there
will exist a common piece Pqk to which both are tangential. This derives from the way that
V (x) has been constructed. Let IQ be the set of indices of those strictly convex pieces that con-
tribute some part of theirs to the overall convex underestimator U (x), and let Pq(x), q ∈ IQ

be such a piece. Let also T1 and T2 (slope(T1) < slope(T2)) be the corresponding lines that
are tangential to piece Pq(x) at x = ξ1 and x = ξ2 respectively.

The following hold:

T1(x) = Pq(ξ1)+ dPq

dx

∣∣∣∣
ξ1

(x − ξ1) (22)

T2(x) = Pq(ξ2)+ dPq

dx

∣∣∣∣
ξ2

(x − ξ2) (23)

xq−1 ≤ ξ1 < ξ2 ≤ xq

For underestimators V (x) and U (x) we have:

V (x) = max {T1(x), T2(x)} ∀x ∈ Dq (24)

U (x) =
⎧
⎨

⎩

T1(x), if x ∈ [xq−1, ξ1)

Pq(x), if x ∈ [ξ1, ξ2]
T2(x), if x ∈ (ξ2, xq]

=
{

Pq(x), if x ∈ [ξ1, ξ2]
V (x), otherwise

(25)

123

62 J Glob Optim (2008) 42:51–67

Let δq be the maximum difference between U and V along the whole subdomain Dq , that is:

δq = max
x∈Dq

{U (x)− V (x)} = max
x∈[ξ1,ξ2]

{
Pq(x)− V (x)

}
(26)

Note that Eq. 24 implies that V (x) ≥ T1(x) ∀x ∈ Dq (and the same holds for T2 as well).
Therefore, Eq. 26 yields:

δq ≤ max
x∈[ξ1,ξ2]

{
Pq(x)− T1(x)

}
(27)

Also, note that function Pq − T1 is convex and that d(Pq−T1)

dx

∣∣∣
ξ1

= 0, therefore:

max
x∈[ξ1,ξ2]

{
Pq(x)− T1(x)

} = Pq(ξ2)− T1(ξ2) (28)

Combining the above result with Eq. 27, we have:

δq ≤ Pq(ξ2)− T1(ξ2)

Eq. 22= Pq(ξ2)− Pq(ξ1)− dPq

dx

∣∣∣∣
ξ1

(ξ2 − ξ1)

ξ1 �=ξ2= (ξ2 − ξ1)

{
Pq(ξ2)− Pq(ξ1)

ξ2 − ξ1
− dPq

dx

∣∣∣∣
ξ1

}

d2 Pq
dx2 > 0
< (ξ2 − ξ1)

{
dPq

dx

∣∣∣∣
ξ2

− dPq

dx

∣∣∣∣
ξ1

}

[ξ1,ξ2]⊆Dq≤ (xq − xq−1)

{
dPq

dx

∣∣∣∣
xq

− dPq

dx

∣∣∣∣
xq−1

}

Eq. 4= (xq − xq−1)
{

f ′(xq)− f ′(xq−1)+ 2αq(xq − xq−1)
}

Dq �=∅= (xq − xq−1)2
{

f ′(xq)− f ′(xq−1)

xq − xq−1 + 2αq
}

note1

≤ (xq − xq−1)2
{

f ′′(Dq) + 2αq
}

Eq. 4= (xq − xq−1)2
{

f ′′(Dq) + 2 max

{
0,−1

2
f ′′
(Dq)

}}

Dq⊆D≤ (xq − xq−1)2
{

f ′′(D) + 2 max

{
0,−1

2
f ′′
(D)

}}

=
(

xU − x L

N

)2

C

where: C is constant.
This constant is strictly positive because f ′′(D) is strictly positive (otherwise f (x) would

be concave and U (x) would be strictly linear, a case that we need not consider in this analy-
sis). Furthermore, it is finite since f (x) has to be C2-continuous defined on a bounded (box)

1 In any given domain D = [α, β] �= ∅, the average slope of a function ψ(x), that is ψ(β)−ψ(α)
β−α , is less or

equal than the maximum slope, denoted as ψ ′(D). Here: ψ ≡ f ′.

123

J Glob Optim (2008) 42:51–67 63

domain. Finally, since it is independent of q , we have:

max
x∈D

{U (x)− V (x)} = max
{
0, δq ∀q ∈ IQ

}
<

(
xU − x L

N

)2

C (29)

We have established a conservative, yet rigorous, upper bound for the maximum separa-
tion distance between underestimators U (x) and V (x). Clearly, we can select a finite level
of partitioning N for which the right hand side of Eq. 29 is as small as required (arbitrary
ε > 0) and thus Theorem 2 has been proven. �

4 Computational results

The method was implemented in C and applied on a set of 40 test functions that have been
presented in the literature (Casado et al. 2003). Table 1 presents the results for various levels
of partitioning. The original αBB method corresponds to no partitioning (N = 1).

As it has been described in Sect. 3, the underestimator should become tighter with dou-
bling of the number of subdomains used and all the results are indeed consistent with this.
Also note that functions 3,17,20 and 36 are convex in the domain under consideration and
therefore underestimator U (x) will be the function f (x) itself for any partitioning level N .

To illustrate the tightness of the underestimators across the whole domain under consider-
ation, we present Fig. 5 that depicts the plots for functions 4,19 and 33. The underestimators
presented correspond to partitioning into N = 24, 36 and 48 subdomains (increasing tight-
ness).

The “inner” algorithm always involves a pair of pieces and therefore its average run time,
t , would be independent of their total number, N . It would depend on function-related fac-
tors, such as the performance of the numerical methods employed to solve Eqs. 8–14. The
“outer” algorithm, which specifies how many times the “inner” one will have to be executed,
mimics the well-known Graham–Scan algorithm. The latter is an O(NlogN) algorithm that
reduces to O(N)when the entries are presorted, like in our case where the pieces are ordered
inherently. Combining the above observations, we expect that the whole method will exhibit
linear computational performance, particularly for large N , at which point the average run
time is converged around a constant value, that is: tN+1 � tN . All runs were performed on
a 3.20 GHz Intel(R) Pentium(R) 4 processor with 1 Gb of RAM. Computations were very
fast, in the order of a few hundredths of a second. Runs with partitioning level N = 512
averaged a CPU time of 0.05 s, while the more tedious runs with N = 1,024 averaged 0.09 s,
an indication that the computational complexity is indeed linear in the level of partitioning.
None of the runs of Table 1 exceeded a CPU time of 0.12 s.

5 Conclusions

In this paper, we presented a convex underestimation method for functions of a
single variable. It utilizes the well known αBB underestimator (Maranas and Floudas 1994;
Androulakis et al. 1995; Adjiman and Floudas 1996), which is applied in a piecewise fashion.
The method was tested on a collection of highly nonlinear problems and the computational
results demonstrated that it provides very tight underestimators. Theoretical results on the
tightness of these underestimators are presented, along with a proof that there is always some

123

64 J Glob Optim (2008) 42:51–67

Ta
bl

e
1

L
ow

er
bo

un
d

re
su

lts
an

d
ot

he
r

in
fo

rm
at

io
n

fo
r

th
e

co
m

pl
et

e
su

ite
of

te
st

fu
nc

tio
ns

#
Fu

nc
tio

n
f(

x)
[x

L
,

xU
]

L
M

G
M
α

B
B

N
=

2
4

8
16

32
64

12
8

25
6

51
2

10
24

G
O

f∗

1
e−

3x
−

si
n3

x
[0,

20
]

4
1

−4
50

−1
13

−2
8.

4
−6

.4
6

−1
.5

49
*

*
*

*
*

*
−1

2
5 ∑ k=

1
−c

os
[(k

+
1)

x]
+

4
[0.

2,
7.

0]
7

1
−5

16
−1

26
−3

2.
2

−6
.5

2
*

*
*

*
*

*
*

−1
3

(x
−

x2
)2

+
(x

−
1)

2
[−

10
,
10

]
1

1
*

*
*

*
*

*
*

*
*

*
*

0

4
(3

x
−

1.
4)

si
n(

18
x)

+
1.

7
[0.

2,
7.

0]
21

1
−3

73
20

−9
32

0
−2

34
5

−5
98

−1
46

−4
3.

0
−1

8.
39

2
*

*
*

*
−1

7.
58

28
7

5
2x

2
−

3 10
0

e−
(2

00
(x

−0
.0

67
5)
)2

[−
10
,
10

]
1

1
−1

E
+

12
−8

E
+

10
−8

E
+

9
−6

E
+

8
−5

E
+

7
−3

E
+

6
−1

E
+

5
−4

60
8

−6
65

−2
9.

2
−0

.9
4

−0
.0

20
90

3

6
co

sx
−

si
n(

5x
)
+

1
[0.

2,
7.

0]
6

1
−1

50
−3

7.
1

−9
.8

2
−2

.4
5

−1
.0

04
*

*
*

*
*

*
−0
.9

52
89

7

7
−x

−
si

n(
3x
)
+

1.
6

[0.
2,

7.
0]

4
1

−5
3.

2
−1

6.
7

−8
.2

1
−6

.4
30

*
*

*
*

*
*

*
−6
.2

62
87

2

8
x

+
si

n(
5x
)

[0.
2,

7.
0]

7
1

−1
42

−3
4.

6
−8

.9
7

−1
.8

8
−0

.0
86

1
*

*
*

*
*

*
0.

07
75

90

9
−e

−x
si

n(
2π

x)
+

1
[0.

2,
7.

0]
7

1
−2

41
−5

9.
3

−1
4.

2
−2

.4
8

−0
.2

5
*

*
*

*
*

*
0.

21
13

15

10
e−

x
si

n(
2π

x)
[0.

2,
7.

0]
7

1
−2

42
−6

0.
5

−1
5.

1
−4

.1
9

−0
.7

3
*

*
*

*
*

*
−0
.4

78
36

2

11
−x

+
si

n(
3x
)
+

1
[0.

2,
7.

0]
5

1
−5

5.
7

−1
8.

1
−8

.9
1

*
*

*
*

*
*

*
*

−5
.8

15
67

5

12
xs

in
x

+
si

n
(10

x 3

)
+

ln
x

[0.
2,

7.
0]

4
1

−2
63

−5
8.

2
−1

3.
0

−7
.3

98
*

*
*

*
*

*
*

−7
.0

47
44

4

−0
.8

4x
+

1.
3

13
si

nx
+

si
n

(10
x 3

)
+

ln
x

−
0.

84
x

[2.
7,

7.
5]

3
1

−3
9.

7
−1

1.
5

−6
.0

5
−4

.6
32

*
*

*
*

*
*

*
−4
.6

01
30

8

14
ln
(3

x)
ln
(2

x)
−

0.
1

[0.
2,

7.
0]

1
1

−5
28

−8
2.

8
−9

.0
2

*
*

*
*

*
*

*
*

−0
.1

41
10

0

15
5 ∑ k=

0
kc

os
[(k

+
1)

x
+

k]
+

12
[0.

2,
7.

0]
8

1
−2

01
3

−4
96

−1
23

−2
5.

7
−2

.8
6

*
*

*
*

*
*

−0
.8

70
88

5

16
−

5 ∑ k=
1

ks
in

[(k
+

1)
x

+
k]

+
3

[0.
2,

7.
0]

7
1

−2
02

3
−5

01
−1

32
−3

5.
1

−1
1.

19
*

*
*

*
*

*
−9
.0

31
24

9

17
si

n2
(1

+
x−

1
4
)
+
(

x−
1

4
)2

[−
10
,
10

]
1

1
*

*
*

*
*

*
*

*
*

*
*

0.
47

56
89

18
√ xs

in
2

x
[0.

2,
7.

0]
3

2
−7

5.
5

−1
5.

6
−1

.9
3

−0
.1

22
*

*
*

*
*

*
*

0

19
x2

−
co

s(
18

x)
[−

5,
5]

29
1

−4
02

6
−1

00
1

−2
49

−6
3.

0
−1

6.
5

−3
.8

4
−1

.4
59

*
*

*
*

−1
20

ex2
[−

10
,
10

]
1

1
*

*
*

*
*

*
*

*
*

*
*

1

123

J Glob Optim (2008) 42:51–67 65

Ta
bl

e
1

co
nt

in
ue

d

#
Fu

nc
tio

n
f(

x)
[x

L
,

xU
]

L
M

G
M
α

B
B

N
=

2
4

8
16

32
64

12
8

25
6

51
2

10
24

G
O

f∗

21
x2 20

−
co

sx
+

2
[−

20
,
20

]
7

1
−1

99
−4

2.
7

−9
.6

0
−0

.5
9

0.
73

3
*

*
*

*
*

*
1

22
co

sx
+

2c
os
(2

x)
e−

x
[0.

2,
7.

0]
2

1
−7

2.
9

−1
8.

6
−3

.4
1

*
*

*
*

*
*

*
*

−0
.9

18
39

7

23
(x

+
si

nx
)e

−x
2

[−
10
,
10

]
1

1
−2

E
+

5
−5

51
63

−1
90

0
−7

0.
4

−3
.5

0
−1

.0
22

−0
.8

25
5

*
*

*
*

−0
.8

24
23

9

24
2s

in
xe

−x
[0.

2,
7.

0]
2

1
−1

9.
0

−4
.3

8
−0

.5
7

*
*

*
*

*
*

*
*

−0
.0

27
86

4

25
2c

os
x

+
co

s(
2x
)
+

5
[0.

2,
7.

0]
3

2
−3

0.
9

−5
.0

7
2.

28
3.

33
5

*
*

*
*

*
*

*
3.

5

26
esi

n(
3x
)

[0.
2,

7.
0]

5
3

−1
41

−3
4.

8
−8

.2
2

−1
.0

3
*

*
*

*
*

*
*

0.
36

78
79

27
si

nx
co

sx
−

1.
5s

in
2

x
+

1.
2

[0.
2,

7.
0]

3
2

−3
9.

2
−9

.8
7

−2
.0

8
−0

.4
52

8
*

*
*

*
*

*
*

−0
.4

51
38

8

28
si

nx
[0,

20
]

4
3

−5
0.

8
−1

3.
5

−3
.8

4
−1

.3
01

*
*

*
*

*
*

*
−1

29
2(

x
−

3)
2

−
e

x 2
+

5
[0.

2,
7.

0]
1

1
−2

5.
1

−5
.2

1
*

*
*

*
*

*
*

*
*

−0
.4

10
31

5

30
−e

si
n(

3x
)
+

2
[0.

2,
7.

0]
4

4
−2

81
−6

9.
6

−1
8.

1
−3

.5
5

−0
.7

67
*

*
*

*
*

*
−0
.7

18
28

2

31
−

10 ∑ i=
1

1
[k i
(x

−a
i)

]2 +
c i

[0,
10

]
8

1
−5

E
+

8
−2

E
+

7
−6

E
+

5
−3

79
43

−3
83

8
−2

11
−2

5.
4

−1
4.

68
9

*
*

*
−1

4.
59

26
5

32
si

n(
1 x
)

[0.
02
,
1]

6
6

−3
03

12
−7

57
9

−1
89

4
−4

74
−1

18
−2

8.
0

−5
.8

3
−1

.2
20

−1
.1

19
−1

.0
94

−1
.0

24
−1

33
−

5 ∑ k=
1

ks
in

[(k
+

1)
x

+
k]

[−
10
,
10

]2
0

3
−1

74
96

−4
37

4
−1

09
6

−2
76

−7
9.

5
−2

2.
0

*
*

*
*

*
−1

2.
03

12
5

34
x2

−5
x+

6
x2

+1
−

0.
5

[0.
2,

7.
0]

1
1

−2
41

39
−4

06
−1

.3
4

*
*

*
*

*
*

*
*

−0
.5

35
53

4

35
−

10 ∑ i=
1

1
[k i
(x

−a
i)

]2 +
c i

[0,
10

]
7

1
−8

E
+

8
−5

E
+

7
−2

E
+

6
−7

24
51

−3
15

4
−4

39
−3

9.
2

−1
5.

41
−1

3.
99

3
−1

3.
92

3
*

−1
3.

92
24

5

36
(x

+1
)3

x2
−

1.
7

[0.
2,

7.
0]

1
1

*
*

*
*

*
*

*
*

*
*

*
−0
.3

5

37
x4

−
12

x3
+

47
x2

−
60

x
−

20
e−

x
[−

1,
7]

1
1

−3
71

6
−6

06
−7

9.
9

*
*

*
*

*
*

*
*

−3
2.

78
12

6

38
x6

−
15

x4
+

27
x2

+
25

0
[−

4,
4]

2
2

−1
47

8
−3

42
−8

6.
0

2.
60

*
*

*
*

*
*

*
7

39
x4

−
10

x3
+

35
x2

−
50

x
+

24
[−

10
,
20

]
2

2
−5

60
−1

12
−3

6.
1

−9
.4

1
−2

.2
5

−1
.2

68
*

*
*

*
*

−1
40

24
x4

−1
42

x3
+3

03
x2

−
27

6x
+

3
[0,

3]
2

1
−1

14
−9

5.
2

−9
0.

6
*

*
*

*
*

*
*

*
−8

9

A
n

as
te

ri
sk

de
no

te
s

th
at

th
e

bo
un

d
is

eq
ua

lt
o

th
e

kn
ow

n
gl

ob
al

op
tim

um
,

f∗
,w

ith
in

si
x

de
ci

m
al

di
gi

ts
of

ac
cu

ra
cy

123

66 J Glob Optim (2008) 42:51–67

−75

765421

−50

0

−25

3 −4

15

10

2

25

−2

5

1−1−3 4

0

−5 0

−5

5

20

5 10

−20

−10

0−10

0

−30

10

−53

Fig. 5 Functions 4, 19 and 33 with underestimators V (x) for three different partitioning levels
(N = 24, 36 and 48)

finite level of partitioning for which the method yields the theoretical (yet a priori unknown)
convex envelope of the function across the domain of interest.

This observation is very important, since it leads to the conclusion that application of the
method with a sufficiently large level of partitioning will close the gap at the root node of
the branch and bound tree, thus eliminating the need for any branching at all.

Although the method can be directly applied to univariate functions, efforts were made
to extend it into multivariate ones, thus taking advantage of its high quality results. In a
subsequent paper (Gounaris and Floudas 2008), we will present how one can utilize the
proposed univariate method to construct convex underestimators of functions with a higher
number of variables.

Acknowledgment The authors gratefully acknowledge support from the National Science Foundation.

References

Adjiman, C.S., Floudas, C.A.: Rigorous convex underestimators for general twice-differentiable problems.
J. Glob. Optim. 9, 23–40 (1996)

Adjiman, C.S., Dallwig, S., Floudas, C.A., Neumaier, A.: A global optimization method, αBB, for gen-
eral twice-differentiable constrained NLPs I. Theoretical Advances. Comput. Chem. Eng. 22, 1137–
1158 (1998a)

Adjiman, C.S., Androulakis, I.P., Floudas, C.A.: A global optimization method, αBB, for general twice-
differentiable constrained NLPs II. Implementation and Computational Results. Comput. Chem.
Eng. 22, 1159–1179 (1998b)

Akrotirianakis, I.G., Floudas, C.A.: A new class of improved convex underestimators for twice continuously
differentiable constrained NLPs. J. Glob. Optim. 30, 367–390 (2004a)

Akrotirianakis, I.G., Floudas, C.A.: Computational experience with a new class of convex underestimators:
box-constrained NLP problems. J. Glob Optim. 29, 249–264 (2004b)

Al-Khayyal, F.A., Falk, J.E.: Jointly constrained biconvex programming. Math. Oper. Res. 8, 273–286 (1983)
Androulakis, I.P., Maranas, C.D., Floudas, C.A.: αBB: a global optimization method for general constrained

nonconvex problems. J. Glob. Optim. 7, 337–363 (1995)
Caratzoulas, S., Floudas, C.A.: Trigonometric convex underestimator for the base functions in Fourier space.

J. Optim. Theory Appl. 124, 339–362 (2005)
Casado, L.G., Martinez, J.A., Garcia, I., Sergeyev, Y.D.: New interval analysis support functions using gradient

information in a global minimization algorithm. J. Glob. Optim. 25, 345–362 (2003)
Esposito, W.R., Floudas, C.A.: Global optimization in parameter estimation of nonlinear algebraic models via

the error-in-variables approach. Indus. Eng. Chem. Res. 35, 1841–1858 (1998)
Floudas, C.A.: Deterministic Global Optimization: Theory, Algorithms and Applications. Kluwer Academic

Publishers (2000)
Floudas, C.A., Pardalos, P.M.: Preface. J. Glob. Optim. 1 113 (1995)
Floudas, C.A., Pardalos, P.M.: Frontiers in Global Optimization. Kluwer Academic Publishers (2003)

123

J Glob Optim (2008) 42:51–67 67

Floudas, C.A.: Research challenges, opportunities and synergism in systems engineering and computational
biology. AIChE J. 51, 1872–1884 (2005)

Floudas, C.A., Akrotirianakis, I.G., Caratzoulas, S., Meyer, C.A., Kallrath, J.: Global optimization in the 21st
century: advances and challenges. Comput. Chem. Eng. 29, 1185–1202 (2005)

Floudas, C.A., Kreinovich, V.: Towards optimal techniques for solving global optimization problems:
symmetry-based approach. In: Torn A., Zilinskas J. (eds.) Models and Algorithms for Global Opti-
mization, pp. 21–42 Springer (2007a)

Floudas, C.A., Kreinovich, V.: On the functional form of convex understimators for twice continuously
differentiable functions. Optim. Lett. 1, 187–192 (2007b)

Gounaris, C.E., Floudas, C.A.: Tight convex underestimators for C2-continuous functions: II. Multivariate
functions. J. Glob. Optim. DOI: 10.1007/s10898-008-9288-8 (2008)

Gümüş, Z.H., Floudas, C.A.: Global optimization of nonlinear bilevel programming problems. J. Glob.
Optim. 20, 1–31 (2001)

Harding, S.T., Maranas, C.D., McDonald, C.M., Floudas, C.A.: Locating all homogeneous azeotropes in
multicomponent mixtures. Ind. Eng. Chem. Res. 36, 160–178 (1997)

Hertz, D., Adjiman, C.S., Floudas, C.A.: Two results on bounding the roots of interval polynomials. Comput.
Chem. Eng. 23, 1333–1339 (1999)

Horst, R., Pardalos, P.M., Thoai, N.V.: Introduction to Global Optimization, 2nd edn. Kluwer Academic
Publishers (2000)

Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches, 3rd edn. Springer (2003)
Liberti, L., Pantelides, C.C.: Convex envelopes of monomials of odd degree. J. Glob. Optim. 25, 157–168 (2003)
Maranas, C.D., Floudas, C.A.: Global minimum potential energy conformations of small molecules. J. Glob.

Optim. 4, 135–170 (1994)
Maranas, C.D., Floudas, C.A.: Finding all solutions of nonlinearly constrained systems of equations. J. Glob.

Optim. 7, 143–182 (1995)
Maranas, C.D., McDonald, C.M., Harding, S.T., Floudas, C.A.: Locating all azeotropes in homogeneous

azeotropic systems. Comput. Chem. Eng. 20, S413–S418 (1996)
McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I—Convex

underestimating problems. Math. Program. 10, 147–175 (1976)
McDonald, C.M., Floudas, C.A.: Decomposition based and branch and bound global optimization approaches

for the phase equilibrium problem. J. Glob. Optim. 5, 205–251 (1994)
McDonald, C.M., Floudas, C.A.: Global optimization for the phase and chemical equilibrium problem: appli-

cation to the NRTL equation. Comput. Chem. Eng. 19, 1111–1141 (1995)
McDonald, C.M., Floudas, C.A.: GLOPEQ: a new computational tool for the phase and chemical equilibrium

problem. Comput. Chem. Eng. 21, 1–23 (1997)
Meyer, C.A., Floudas, C.A.: Trilinear monomials with positive or negative domains: facets of the convex and

concave envelopes. In: Floudas C.A., Pardalos P.M. (eds.) Frontiers in Global Optimization. Kluwer
Academic Publishers (2003)

Meyer, C.A., Floudas, C.A.: Trilinear monomials with mixed sign domains: facets of the convex and concave
envelopes. J. Glob. Optim. 29, 125–155 (2004)

Meyer, C.A., Floudas, C.A.: Convex underestimation of twice continuously differentiable functions by piece-
wise quadratic perturbation: spline αBB underestimators. J. Glob. Optim. 32, 221–258 (2005)

Meyer, C.A., Floudas, C.A.: Global optimization of a combinatorially complex generalized pooling problem..
AIChE J. 52, 1027–1037 (2006)

O’Rourke J.: Computational Geometry in C 2nd edn. Cambridge University Press (1998)
Ryoo, H.S., Sahinidis, N.V.: Analysis of bounds for multilinear functions. J. Glob. Optim. 19, 403–424 (2001)
Sherali, H.D., Adams, W.P.: Reformulation-Linearization Techniques in Discrete and Continuous Optimiza-

tion. Kluwer Academic Publishers (1999)
Tawarmalani, M., Sahinidis, N.V.: Semidefinite relaxations of fractional programs via novel convexification

techniques. J. Glob. Optim. 20, 137–158 (2001)
Tawarmalani, M., Sahinidis, N.V.: Convexification and Global Optimization in Continuous and Mixed-Integer

Nonlinear Programming. Kluwer Academic Publishers (2002a)
Tawarmalani, M., Sahinidis, N.V.: Convex extensions and envelopes of lower semi-continuous functions. Math.

Program. 93, 247–263 (2002b)
Zabinsky, Z.B.: Stochastic Adaptive Search for Global Optimization. Kluwer Academic Publishers (2003)

123

10.1007/s10898-008-9288-8

	Tight convex underestimators for C2-continuous problems: I. univariate functions
	Abstract
	1 Introduction
	2 Theoretical results
	2.1 Inner algorithm
	2.2 Outer algorithm

	3 Tightness of proposed underestimator
	4 Computational results
	5 Conclusions
	Acknowledgment

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

